
Intro to Python

Aug 30th

Slides by M. Stepp, M. Goldstein, M. DiRamio, and S. Shah

Digital Image Processing
COSC 6380/4393

• Python and OpenCV Setup

2

Compiling and interpreting
• Many languages require you to compile

(translate) your program into a form that the
machine understands.

• Python is instead directly interpreted into
machine instructions.

compile execute

outputsource code
Hello.java

byte code
Hello.class

interpret

outputsource code
Hello.py

The Python Interpreter

• If installed:

– Open Command prompt:

> python

• Else

– https://repl.it/languages/python3

https://repl.it/languages/python3

Overview

1. Variables and Datatypes

2. Control statements

3. Functions and Modules

4. Matrix Operations

The Python Interpreter

•Python is an interpreted language
>>> 3 + 7
10
>>> 3 < 15
True

• Print anything using print()
>>> print('hello‘)
hello

•Elements separated by commas print with a space between them
>>> print('hello', 'there‘)
hello there

Jupyter

The Python Interpreter

• The ‘#’ starts a line comment

>>> 'this will print'

'this will print'

>>> #'this will not'

>>>

Variables
• Are not declared, just assigned

– The variable is created the first time you assign it a value

• Are references to objects
– Type information is with the object, not the reference

• Everything in Python is an object

• Everything means everything, including functions and
classes (more on this later!)

• Data type is a property of the object and not of the
variable

>>> x = 7
>>> x
7

>>> x = 'hello'
>>> x
'hello'

objectreference

Numbers

• Types: Int, Long, Float, Complex

• Convert between types:
– int(x) converts x to an integer

– float(x) converts x to a floating point

• Complex type built into python

– Same operations are supported as integer and float
>>> x = 3 + 2j
>>> y = -1j
>>> x + y
(3+1j)
>>> x * y
(2-3j)

Numbers are immutable

>>> x = 4.5
>>> y = x
>>> y += 3
>>> x
4.5
>>> y
7.5

x 4.5

y

x 4.5

y 7.5

String Literals: Many Kinds
• Strings are immutable
• Can use single or double quotes, and three double

quotes for a multi-line string

>>> 'I am a string'
'I am a string'
>>> "So am I!"
'So am I!'
>>> s = """And me too!
though I am much longer
than the others :)"""
'And me too!\nthough I am much longer\nthan the others :)‘
>>> print s
And me too!
though I am much longer
than the others :)‘

Substrings and Methods

• len(String) – returns the number of characters in the String
• str(Object) – returns a String representation of the Object

>>> len(s)
6
>>> str(10.3)
'10.3'

Jupyter

String Formatting

• Similar to C’s printf
• <formatted string> % <elements to insert>
• Can usually just use %s for everything, it will

convert the object to its String representation.
>>> "One, %d, three" % 2
'One, 2, three'
>>> "%d, two, %s" % (1,3)
'1, two, 3'
>>> "%s two %s" % (1, 'three')
'1 two three'
>>>

Jupyter

Data Structures

1. Lists

• holds an ordered collection of items

2. Tuples

• similar to lists, they are immutable

3. Dictionaries

• holds key – value pairs

Lists

• Ordered collection of data

• Data can be of different types

• Lists are mutable

• Same subset operations as Strings

>>> x = [1,'hello', (3 + 2j)]
>>> x
[1, 'hello', (3+2j)]
>>> x[2]
(3+2j)
>>> x[0:2]
[1, 'hello']

Lists: Modifying Content

• x[i] = a reassigns the
ith element to the
value a

• Since x and y point to
the same list object,
both are changed

• The method append
also modifies the list

>>> x = [1,2,3]
>>> y = x
>>> x[1] = 15
>>> x
[1, 15, 3]
>>> y
[1, 15, 3]
>>> x.append(12)
>>> y
[1, 15, 3, 12]

Jupyter

Tuples

• Tuples are immutable
versions of lists

• One strange point is the
format to make a tuple
with one element:

‘,’ is needed to differentiate
from the mathematical
expression (2)

>>> x = (1,2,3)
>>> x[1:]
(2, 3)
>>> y = (2,)
>>> y
(2,)
>>>

Jupyter

Dictionaries

• A set of key-value pairs

• Dictionaries are mutable

>>> d = {1 : 'hello', 'two' : 42, 'blah' : [1,2,3]}
>>> d
{1: 'hello', 'two': 42, 'blah': [1, 2, 3]}
>>> d['blah']
[1, 2, 3]

Dictionaries: Add/Modify

>>> d
{1: 'hello', 'two': 42, 'blah': [1, 2, 3]}
>>> d['two'] = 99
>>> d
{1: 'hello', 'two': 99, 'blah': [1, 2, 3]}

>>> d[7] = 'new entry'
>>> d
{1: 'hello', 7: 'new entry', 'two': 99, 'blah': [1, 2, 3]}

• Entries can be changed by assigning to that entry

• Assigning to a key that does not exist adds an entry

Dictionaries: Deleting Elements

• The del method deletes an element from a dictionary

>>> d
{1: 'hello', 2: 'there', 10: 'world'}
>>> del(d[2])
>>> d
{1: 'hello', 10: 'world'}

Jupyter

Copying Dictionaries and Lists

• The built-in list function will copy a list

• The dictionary has a method called copy

>>> l1 = [1]
>>> l2 = list(l1)
>>> l1[0] = 22
>>> l1
[22]
>>> l2
[1]

>>> d = {1 : 10}
>>> d2 = d.copy()
>>> d[1] = 22
>>> d
{1: 22}
>>> d2
{1: 10}

Data Type Summary

• Lists, Tuples, and Dictionaries can store any type
(including other lists, tuples, and dictionaries!)

• Only lists and dictionaries are mutable

• All variables are references

Data Type Summary

• Integers: 2323, 3234L

• Floating Point: 32.3, 3.1E2

• Complex: 3 + 2j, 1j

• Lists: l = [1,2,3]

• Tuples: t = (1,2,3)

• Dictionaries: d = {‘hello’ : ‘there’, 2 : 15}

Booleans

• 0 and None are false

• Everything else is true

• True and False are aliases for 1 and 0, respectively

Moving to Files

• The interpreter is a good place to try out some
code, but what you type is not reusable

• Python code files can be read into the interpreter
using the import statement

Moving to Files
• In order to be able to find a module called myscripts.py, the

interpreter scans the list sys.path of directory names.

• The module must be in one of those directories.

>>> import sys
>>> sys.path
['C:\\Python26\\Lib\\idlelib', 'C:\\WINDOWS\\system32\\python26.zip',
'C:\\Python26\\DLLs', 'C:\\Python26\\lib', 'C:\\Python26\\lib\\plat-win',
'C:\\Python26\\lib\\lib-tk', 'C:\\Python26', 'C:\\Python26\\lib\\site-packages']
>>> import myscripts
Traceback (most recent call last):

File "<pyshell#2>", line 1, in <module>
import myscripts.py

ImportError: No module named myscripts.py

No Braces

• Python uses indentation instead of braces to
determine the scope of expressions

• All lines must be indented the same amount to be
part of the scope (or indented more if part of an inner
scope)

• This forces the programmer to use proper indentation
since the indenting is part of the program!

If Statements

import math
x = 30
if x <= 15 :

y = x + 15
elif x <= 30 :

y = x + 30
else :

y = x
print("y = ", math.sin(y))

y = -0.3048106211022167

Jupyter

While Loops

x = 1
while x < 10 :

print(x)
x = x + 1

1
2
3
4
5
6
7
8
9

Loop Control Statements

break Jumps out of the closest

enclosing loop

continue Jumps to the top of the closest

enclosing loop

pass Does nothing, empty statement

placeholder

The Loop Else Clause

• The optional else clause runs only if the loop exits
normally (not by break)

x = 1

while x < 3 :
print(x)
x = x + 1

else:
print(“hello”)

1
2
hello

x = 1

while x < 5 :
print(x)
x = x + 1
break

else :
print(“i got here”)

1

For Loops
• For loops: iterating through a list of values

• For loops also may have the optional else clause

1
7
13
2

for x in [1,7,13,2] :
print x

0
1
2
3
4

for x in range(5) :
print x

range(n) generates a list of
numbers [0,1, …, n-1]

Jupyter

for x in range(5):
print x
break

else :
print(“i got here”)

1

Function Basics

def max(x,y) :
if x < y :

return y
else :

return x

>>>>>> max(3,5)
5
>>> max('hello', 'there')
'there'
>>> max(3, 'hello')
TypeError

Functions are first class objects

• Can be assigned to a variable

• Can be passed as a parameter

• Can be returned from a function

• Functions are treated like any other variable in
Python, the def statement simply assigns a
function to a variable

Function names are like any variable

• Functions are objects

• The same reference
rules hold for them as
for other objects

>>> x = 10
>>> x
10
>>> def x () :
... print(“hello”)
>>> x
<function x at 0x619f0>
>>> x()
hello
>>> x = 'blah'
>>> x
'blah'

Functions as Parameters

def foo(f, a) :
return f(a)

def bar(x) :
return x * x

>>> foo(bar, 3)
9

Note that the function foo takes two parameters and
applies the first as a function with the second as its
parameter

Functions Inside Functions

• Since they are like any other object, you can have
functions inside functions

def foo (x,y) :
def bar (z) :

return z * 2
return bar(x) + y

>>> foo(2,3)
7

Functions Returning Functions

def foo (x) :
def bar(y) :

return x + y
return bar

main
f = foo(3)
print f
print f(2)

5

Parameters: Named

• Call by name

• Any positional
arguments must
come before
named ones in a
call

>>> def foo (a,b,c) :
... print a, b, c
...
>>> foo(c = 10, a = 2, b = 14)
2 14 10
>>> foo(3, c = 2, b = 19)
3 19 2

Parameters: Defaults

• Parameters can be
assigned default
values

• They are overridden if
a parameter is given
for them

• The type of the
default doesn’t limit
the type of a
parameter

>>> def foo(x = 3) :
... print x
...
>>> foo()
3
>>> foo(10)
10
>>> foo('hello')
hello

Modules

• The highest level structure of Python

• Each file with the py suffix is a module

• Each module has its own namespace

Modules: Imports

import mymodule Brings all elements

of mymodule in, but

must refer to as

mymodule.<elem>

from mymodule import x Imports x from

mymodule right into

this namespace

from mymodule import * Imports all elements

of mymodule into

this namespace

Math commands
• Python has useful commands for performing calculations.

• To use many of these commands, you must write the following at
the top of your Python program:
from math import *

Command name Description

abs(value) absolute value

ceil(value) rounds up

cos(value) cosine, in radians

floor(value) rounds down

log(value) logarithm, base e

log10(value) logarithm, base 10

max(value1, value2) larger of two values

min(value1, value2) smaller of two values

round(value) nearest whole number

sin(value) sine, in radians

sqrt(value) square root

Constant Description

e 2.7182818...

pi 3.1415926...

http://docs.python.org/lib/module-math.html

Logic
• Many logical expressions use relational operators:

• Logical expressions can be combined with logical operators:

Operator Example Result

and 9 != 6 and 2 < 3 True

or 2 == 3 or -1 < 5 True

not not 7 > 0 False

Operator Meaning Example Result

== equals 1 + 1 == 2 True

!= does not equal 3.2 != 2.5 True

< less than 10 < 5 False

> greater than 10 > 5 True

<= less than or equal to 126 <= 100 False

>= greater than or equal to 5.0 >= 5.0 True

Exercise: Evaluate the quadratic equation ax^2 + bx + c = 0 for a given a, b,
and c.

Exercise: Evaluate the quadratic equation ax^2 + bx + c = 0 for a given a, b,
and c.

from math import *
Print("Hello! This is my quadratic equation program.")
a = input("What is a? ")
b = input("What is b? ")
c = input("What is c? ")
root1 = (-b + sqrt(b ** 2 - 4 * a * c)) / (2 * a)
root2 = (-b - sqrt(b ** 2 - 4 * a * c)) / (2 * a)
Print("The roots are", root1, "and", root2)

Exercise: How would we print the "99 Bottles of Beer" song?

Exercise: How would we print the "99 Bottles of Beer" song?

maxBottles = 99
for bottles in range(maxBottles, 0, -1):

print(bottles, "bottles of beer on the wall")
print(bottles, "bottles of beer“)
print("You take one down“)
print("Pass it around“)
print(bottles - 1, "bottles of beer on the wall" print "“)

print("Oh no, we're out of beer.“)

Exercise: Write a Python program that computes the factorial of an integer.

Exercise: Write a Python program that computes the factorial of an integer.

n = input("Factorial of what number? ")
fact = 1
for i in range(1, n + 1):

fact = fact * i

print "The factorial is", fact

