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Review: Classes of Computers

* Personal computers
— General purpose, variety of software
— Subject to cost/performance tradeoff

* Server computers
— Network based
— High capacity, performance, reliability
— Range from small servers to building sized
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Review: Classes of Computers

* Supercomputers
— High-end scientific and engineering calculations

— Highest capability but represent a small fraction of the overall
computer market

e Embedded computers
— Hidden as components of systems
— Stringent power/performance/cost constraints

UNIVERSITYof HOUSTON



Review: How do computers work?

T
Today: 20 emails » Represent numbers
Yesteyrday- 10 elmails P v What is the basic idea behind a
' ?
Total: 30 emails » Perform addition — computer.. _
How does it do this?
Emaill => subject: Hi John » Represent text

-
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DEPARTMENT OF COMPUTER SCIENCE

Review: Control the flow of current using transistors

.|.
NPN Transistor

E

Transistor Symbol

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Review: Control the flow of current using transistors

+ +
C

No Current flow

Current flow

Apply small current
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Review: Binary Representation of Numbers

Binary Number -> use two symbols for representation (0 & 1)
101101
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Review: Binary Representation of Numbers

Binary Number -> use two symbols for representation (0 & 1)
101101

index 5 4 3 2 1 0

1 0 1 1 0 1

1x2° o 0X2" g 1X2° g 1X2? g 0X2' g 1X2°

1X32 0X16 1X8 1X4 0X2 1X1 = 45
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Review: Represent Letters

Come up with an arbitrary convention to associate with
numbers, and then use binary representation.

A=>65=>0100000T
B=>66=>01000010
C=>67=>01000011
D=>68=>01000100
Represent words CAB=> 0710000717 07000007 07000010
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Review: Computations

 Can we do Arithmetic (Addition)?
— Need to take at least two inputs, and operate on them.
— We will build logic gates to accomplish this.

— How do we build logic gates?
* Cleverly place transistors to create circuits.
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Review: Two transistors in parallel: Logic Gate

C
Input 1 Input 2 Output
B 0 0 0
Input 1: Apply current
1 0 0
E

C 0 1 0
B 1 1 1
Input 2: Apply curre
E | AND Gate D

Output Symbol
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DEPARTMENT OF COMPUTER SCIENCE

Review: Another logic gate

Input Output
A A A 0 1
I 1 0
DC Current
Close (1) C
‘ Output (0)
B
O oO—
NOT Gate
E [
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Review: OR Gate

Input 1 Input 2 Output
0 0 0
1 0 1
OR Gate
0 1 1

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Review: ADD Numbers (Simplified)

* Add two one-bit numbers, and produce two-bit results
* InputcanbeOorl

Input 1 Output 1
Input 2 Output 2
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XOR Gate
Input 1 Input 2 Output 2
0 0 0
1 0 1
0 1 1
1 1 0
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Review: Design an Adder

Output 1
Input 1
Input 2 Output 2
—7 Input 1 Input 2 Output 1 | Output 2
0 0 0 0
XOR Gate

It looks similar to OR Gate.

Except the last row is inverted where both inputs are 1, 0 1 0 1

the result in inverted.
1 0 0 1
1 1 1 0

Binary
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Review: Many Such Circuits Exists

 There are many such circuits available to

— Load data, store data, add, subtract and perform logical ops on data.
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Review: Questions

. What operations can hardware perform? How to instruct
computer to perform a certain operation? How are negative
numbers/exponentials represented?

How do we perform addition, multiplication, division?

How do we improve the speed of the computer? Can we do things
in parallel (compute while loading next data, etc.)

. Where is data stored? How can we make it efficient?

. Can we perform computations in parallel to improve
performance?

How do we define performance?
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DEPARTMENT OF COMPUTER SCIENCE

Review: Third Generation: Integrated Circuits

e 1958 — the invention of the
integrated circuit

* Exploits the fact that transistors
can be fabricated from a

semiconductor such as silicon
e Many transistors can be produced at the same time
on a single wafer of silicon

e Transistors can be connected with a processor
metallization to form circuits

UNIVERSITYof HOUSTON



Semiconductor Technology

e Silicon: semiconductor

* Add materials to transform properties:
— Conductors
— Insulators
— Switch
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DEPARTMENT OF COMPUTER SCIENCE

Manufacturing ICs

Silicon ingot

)
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DEPARTMENT OF COMPUTER SCIENCE

Manufacturing ICs

Blank
Silicon ingot wafers

) — s — () — it
-

@> 1"
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Silicon ingot

Manufacturing ICs

Blank
wafers

¢

20

to 40

processing steps
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T

——.....\

A\

AT~
N

_. .
AT ITNAT TN

Chemical
Process/Add
impurities to
make switches
(transistors



Manufacturing ICs

Blank
Silicon ingot wafers
processing steps
* Chemical
Tested dies Tested Patterned wafers Process/Add
i wafer AN impurities to make
l P . .
_ Oooogg : Wafer AN switches (transistors
ooxOoo | Dicer Qﬁ@‘ tester | ¥ SN (
i )
\ .
L Delicate Process at

microscopic level,
potential for failure

Multiple chips/dies
from each wafer
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Manufacturing ICs

Blank
Silicon ingot wafers
. 20to 40
C ) SiiEEG @ processing steps
Tested dies Tested Patterned wafers
O wafer T
Circuitry t te | Bond die t DDDZIDDDIZD (R Waf ( )1-\
IrCUItry to Create | bond die to : afer 1A \
. Y package OOXOO ey Q i "@ tester AR
logic gates/ ouoo s G
l OO \
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Manufacturing ICs

Blank

Silicon ingot wafers
processing steps
Tested dies Tested Patterned wafers

0O wafer T
Bond die t DDD&DDDED Waf EREEZIN
ond die to : afer 112
package OOXROO 2zl tester pann )
OO0 ( \/
l OO \ =~
\"--_..
Packaged dies Tested packaged dies

Ogg | pat | OOX | shipto
tester customers

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Intel Core i7 Wafer

* 300mm wafer, 280 chips, 32nm technology
* Each chipis 20.7 x 10.5 mm
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DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

Cost to make one chip/die

> SQO Cost per wafer

9 chips/dies
4 Cost per die

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

> SQO Cost per wafer

9 chips/dies

Cost per wafer (90
g Slo Cost per die = p fer (90)

dies per wafer (9)
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DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

> SQO Cost per wafer

9 chips/dies
ips/di A $10 Cost per wafer (90)

Cost die =
oSt per aie dies per wafer (9)

9 chips/dies

»
»
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DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

> SQO Cost per wafer

9 chips/dies c 90
N ost per wafer
: Slo Cost per die = — P fer ©0)
dies per wafer (9)
9 chips/dies _ Working dies(6)
N ? yleld — = 0.66

dies per wafer (9)
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DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

> SQO Cost per wafer

9 chips/dies ; 90
_ ost per wafer
i Slo Cost per die = — P fer (90) =10
dies per wafer (9)
9 chips/di old — Working dies(6) 0.66
chips Iei 2 Y = dies per wafer (9)
Cost per wafer (90
Cost per die = P fer O0) = 15.15

dies per wafer (9) = yield (0.66)

UNIVERSITYof HOUSTON



Integrated Circuit Cost

Cost per wafer
Dies per wafer x Yield

Cost per die =

Dies per wafer ~ Wafer area/Die area

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

9 chips/di old — Working dies(6)
cnips lei P} Y = dies per wafer (9)

>
[ ]

0.66

Yield for this wafer.

Much more complicated to compute yield for
manufacturing process.

Many statistical models are proposed to estimate yield.
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Integrated Circuit Cost

Cost per wafer
Dies per wafer x Yield

Cost per die =

Dies per wafer ~ Wafer area/Die area

1

Yield= _ -
(1+ (Defects per areaxDie area/2))

* Nonlinear relation to area and defect rate
— Wafer cost and area are fixed
— Defect rate determined by manufacturing process
— Die area determined by architecture and circuit design
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Questions

6. How do we define performance?
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DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Ougput 1
Input 1
Input 2 ’ Output 2

Output 1 | Output 2

l 0 0 0 0

0 1 0 1
Half Adder 1 0 0 !
1 1 1 0

UNIVERSITYof HOUSTON Binary




DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Output 1
Input 1

Half Adder
Output 2

Input 1 Input 2 Output 1 | Output 2
Switches 0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

UNIVERSITYof HOUSTON Binary



DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Input 1 Input 1

Half Adder

Input 2 Input 2 Output 2

Load to temp memory

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder

Output 2

What is memory?
How do you make a

computer remember values
(0,1)?

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder

Output 2

What is memory?

How do you make a
computer remember values
(0,1)?

Also using Logic Gates.
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Remembering 1’s

OR Gate
Output
—>
A B Output
0 0 0
1 0 1
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Remembering 1’s

Output
A B Output
0 0 0
1 0 1
0 X ?
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Remembering 1’s

A
Output
B '
] A B Output

0 0 0
1 0 1
0 X 1
1 X 1

Once input, it remembers a one for ever.
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Remembering 1's and O’s

Output A Output
- B —)
Output A Output
0 1
1 0
1 0
0 0
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Combine Both: SR And-OR Latch

S R Output

UNIVERSITYof HOUSTON

https://upload.wikimedia.org/wikipedia/commons/e/e0/RS-and-or-flip-flop.png



Combine Both: SR And-OR Latch

S R Output
1 0 1
0 0 ?
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DEPARTMENT OF COMPUTER SCIENCE

Combine Both: SR And-OR Latch

Set
S R Output
Reset 1 0 1
0 0 1 :
0 1 ?

UNIVERSITYof HOUSTON
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DEPARTMENT OF COMPUTER SCIENCE

Combine Both: SR And-OR Latch

Set
S R Output
Reset 1 0 1
0 0 1 >
0 1 0
0 0 0 >

UNIVERSITYof HOUSTON

https://upload.wikimedia.org/wikipedia/commons/e/e0/RS-and-or-flip-flop.png



DEPARTMENT OF COMPUTER SCIENCE

Gated Latch

Data Input (i)

I O
Data Output (o)

Write Enable (w) 0 0
1 0 (No update)
0 0 (Same as |)
1 1 (Same as |)
0 1 (No update)
1 1 (No update)

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder

Output 2

What is memory?

How do you make a
computer remember values
(0,1)?

Also using Logic Gates.
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DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder
Output 2

No update as write is
disabled

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder
Output 2

Values updated as
write is enabled
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DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder
Output 2

Values loaded into
memory
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DEPARTMENT OF COMPUTER SCIENCE

Register (4 bit) — A group of latches

Data In '
A register that can store

— up to 4 bits (0-15)

_/

Enable/disable write simultaneously

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Register (4 bit) — A group of latches

Data In

4 bit
Register

Data In _

Write enable

Enable/disable write simultaneously
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DEPARTMENT OF COMPUTER SCIENCE

Instruction

4 bit Register 4 bit Register
4-bit Adder 4-bit Multiplier s 4-bit Divider

4 bit Register

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Instruction

Loaded data Loaded data

4-bit Adder 4-bit Multiplier s 4-bit Divider

How to instruct computer to Add/Multiply/Divide?
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Multiplexer (Data selector)

A O

—

B O

e

f

|—1-'I'.'l—1-'l:'l
il:j.u.ﬂ.._'l.._'l..

Ba

= 3 |= {3 |= |0 |— |3
= D = O == O |
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Multiplexer (Data selector)

(@
Il
o

A O

—

B O

e

I
[_1._11:):;

iD ol | =2 |

Ba

= =z | | D= | | | S
= |3 |= | |—= |3 |—== ({3
= D = (D= = | O (O
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Multiplexer (Data selector)

co Selector
t A B xXllce A x

1
A O |10 [1 olo|o|o
6 |1 |1 olo|l1]o0
SR L o |1 1 | 1
~|>D— 5 1 lof[o] o
B O 1ol 1l 1
111l oll o
111 1] 1

UNIVERSITYof HOUSTOI>I
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DEPARTMENT OF COMPUTER SCIENCE

Instruction

4 bit Register

4 bit Register

4 bit Register

Loaded data Loaded data

4-bit Adder 4-bit Multiplier 4-bit Divider

10001011000 | | |
Selector to choose

operation

11000

Selector to
choose data

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Instruction

4 bit Register

4 bit Register

4 bit Register

Loaded data

Loaded data

4-bit Adder 4-bit Multiplier 4-bit Divider

10001011000 | | |
Switch to choose

operation

11001

Switch to
choose data

4 bit Register 4 bit Register

4 bit Register

11100

Selector to choose UNIVERSITYof HOUSTON

output register



DEPARTMENT OF COMPUTER SCIENCE

Instruction

4 bit Register

4 bit Register

4 bit Register

Loaded data Loaded data

11001

Operand_s

(Source)

4-bit Adder 4-bit Multiplier 4-bit Divider
10001011000 | | |
Opcode
4 bit Register 4 bit Register 4 bit Register

11100

Operand_d (destination) UNIVERSITYof HOUSTON



Instruction Example

Opcode

Operand_s1

Operand_s2

Operand_d

10001011000 11001

11010

11100

Instruction : 10001011000 11001 11010 11100

Instruction are represented in binary form. Stored in memory.

The only language a computer understand.
Byte code, machine code, ...
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Levels of Program Code

¢ Hardware representation :Binarj,rmachine
anguage
— Binary digits (bits) {or ARMYE)
— Encoded instructions and data

UNIVERSITYof HOUSTON

00000000101000100000000100011000
00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000



Levels of Program Code

¢ Hardware representation :Binarj,rmachine
anguage
— Binary digits (bits) {or ARMYE)
— Encoded instructions and data

UNIVERSITYof HOUSTON

(i?semb;:w
_—ﬂ“'/

00000000101000100000000100011000
00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000

10101101111000100000000000000100
00000011111000000000000000001000



Levels of Program Code

Assembl
* Assembly language e
— Textual representation of e
instructions
¢ Hardware representation Binary machine
language
— Binary digits (bits) {or ARMYE)

— Encoded instructions and data
UNIVERSITYof HOUSTON

Swap:
L5L ¥10, X1.3
ADD  X10, X0,X10
LDUR X9, [X10,01]
LDUR X11,[X10,81
STUR X11,[X10,01
STUR X9, [X10.81
BR X10
(;iésen;;;t)
o —

00000000101000100000000100011000
00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000



Levels of Program Code

* High-level language pggg
— Level of abstraction closerto  “”
problem domain
— Provides for productivity and
portability
Assembl
* Assembly language e
— Textual representation of e
instructions
¢ Hardware representation :Binarj,rmachine
anguage
— Binary digits (bits) {or ARMYE)

— Encoded instructions and data
UNIVERSITYof HOUSTON

swap{int v[1, int k)
{int temp:
temp = vlk];
VLE] = vIk+11;
v[k+1] = temp;

l_

Compiler

|

Swap:

L5L X10, X1.3

ADD  X10, X0,X10

LOUR X%, [X10,0]

LOUR X11,[X10,8]

STUR X11,[X10,0]

STUR X%, [X10,8]

BR ¥10

Assembler

Qooo0000101000100000000100011000
UEEEEEOJ JJUDDIDIIIIIOOOOOIDUDDI
10001101111000100000000000000000
1000111 UDUDIDDIDEEEEEDODOODDDIN
1010111 UDUDIDDIDEEEEEOOOOODDUDN
10101101111000100000000000000100
ULLLLL_;___SDDUDEEEEEOOOOODDIDm



DEPARTMENT OF COMPUTER SCIENCE

Computer Architecture: Great |ldeas

» Use abstraction to simplify design

ABSTRACTION

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.

MUL X3, X1, X2
ADD X5, X3, X4

X5

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.

MUL X3, X1, X2
ADD X5, X3, X4

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.

MUL X3, X1, X2

UNIVERSITYof HOUSTON




DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.

MUL X3, X1, X2 — 900 ps (picoseconds) Il
ADD X5, X3, X4

900 ps

No valid result in X3 until after 900 ps «

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.
MUL X3, X1, X2 —900 ps
ADD X5, X3, X4 — 200 ps X1

Execute after 900 ps
X4

v

UNIVERSITYof HOUSTON




DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.

Time o5

Add 200
Mul 900
Div (Max) 1200

* Hundreds of instructions.
* Too complicated to compute how much to wait.
* Choose the largest values as the clock period for all
instructions.
e Allinstructions are executed for that period of time.
UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

CPU Clocking

* QOperation of digital hardware governed by a
constant-rate clock

<«—Clock period—

Clock (cycles)

= Clock period: duration of a clock cycle
x €.9., 250ps = 0.250ns = 250x10-1°s

UNIVERSITYof HOUSTON



CPU Clocking

= Clock period: duration of a clock cycle
= €.0., 250ps = 0.25ns = 250x10-1°s

= Clock frequency (rate in Hertz): cycles per

second
1 (1000

o H —
(250 x 10-12) 2 250
—4 «+105KHz = 4 * 103MHz = 4 GHz

) *x 10°Hz =4+ 10°Hz

UNIVERSITYof HOUSTON



CPU Clocking

* MUL X3, X1, X2
(wait 1200ps)

* ADD X5, X3, X4
(wait 1200ps)

e Next Instruction

UNIVERSITYof HOUSTON



CPU Clocking

* MUL X3, X1, X2
(wait 1200ps)

* ADD X5, X3, X4
(wait 1200ps)

e Next Instruction

How does a computer know 1200 ps has passed?

UNIVERSITYof HOUSTON



Clock Cycles Per Instruction (CPI)

+ ADD X3, X1, X2 "
(takes 200ps)
¢ AD:) XS, X3, X4 200ps
(takes 200ps) |
1200ps 2460ps

MUL X3, X1, X2 =» 1200ps

UNIVERSITYof HOUSTON



Clock Cycles Per Instruction (CPI)

+ ADD X3, X1, X2 I
(takes 200ps)
° AD :) XS; X31 X4 200ps
(takes 200ps) :
60iOps 12:00ps

DIV X3, X1, X2 =» 600ps X 2Clock cycles

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Clock Cycles Per Instruction (CPI)

* All take at-least one clock cycle.
* Some instructions can take more than one clock cycle.
* |f the instruction set has only three instructions

Clock Cycles

Add 1
Mul 2
Div 12
: 14+2+12
Average Clock Cycle Per Instruction (CPI) = i 3+ =5

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Performance

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Defining Performance

* Which airplane has the best performance?

Passenger | Cruising range
Airplane capacity (miles)

Cruising speed
(m.p.h.)

Boeing 777 375 4630 610
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 o44

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Defining Performance

* Which airplane has the best performance?

Passenger | Cruising range | Cruising speed | Passenger throughput
Airplane capacity (m.p.h.) (passengers x m.p.h.)
375 610

Boeing 777 4630 228,750
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 o44 79,424

UNIVERSITYof HOUSTON



Response Time and Throughput

Response time
— How long it takes to do a task

Throughput
— Total work done per unit time

* e.g., tasks/transactions/... per hour

How are response time and throughput affected by
— Replacing the processor with a faster version?
— Adding more processors?

We'll focus on response time for now...

UNIVERSITYof HOUSTON



Relative Performance

* Define Performance = 1/Execution Time
e “Xisntime faster than Y” or
e “Speedup of XoverY “is

Performance, /Performance,
= Execution time, /Execution time, =n

= Example: time taken to run a program

10son A, 15s0on B

Execution Timeg / Execution Time,
=15s/10s=1.5

So Ais 1.5 times faster than B
Speedup of Aover Bis 1.5

UNIVERSITYof HOUSTON



Measuring Execution Time

* Elapsed time

— Total response time, including all aspects
* Processing, I/0, OS overhead, idle time

— Determines system performance

* CPU time
— Time spent processing a given job
* Discounts I/O time, other jobs’ shares
— Comprises user CPU time and system CPU time

— Different programs are affected differently by CPU and system
performance

UNIVERSITYof HOUSTON



CPU Time

Instruction Clock Cycles Cycle Time (ps)

1. MUL X3, X1, X2 2 600

2. ADD X5, X3, X4 1 600

3. Div X7, X3 X6 12 600

CPU Time 15 (Total Clock Cycles) 15 * 600 = 9000 ps =9 ns

CPU Time = Total Clock Cycles X Clock Cycle Time

UNIVERSITYof HOUSTON




CPU Time

CPU Time = CPU Clock Cyclesx Clock Cycle Time

~ CPUClock Cycles
Clock Rate

* Performance improved by

— Reducing number of clock cycles
— Increasing clock rate

UNIVERSITYof HOUSTON



CPU Time

CPU Time = CPU Clock Cyclesx Clock Cycle Time

~ CPUClock Cycles
Clock Rate

* Performance improved by

— Reducing number of clock cycles
— Increasing clock rate

— Hardware designher must often trade off clock rate
against cycle count

MUL X3, X1, X2 =» 1200ps -)1600ps XIZCIock cycles

UNIVERSITYof HOUSTON



DEPARTMENT OF COMPUTER SCIENCE

Clock Cycles Per Instruction (CPI)

* All take at-least one clock cycle.
* Some instructions can take more than one clock cycle.
* |f the instruction set has only three instructions

Clock Cycles

Add 1
Mul 2
Div 12
: 14+2+12
Average Clock Cycle Per Instruction (CPI) = i 3+ =5

UNIVERSITYof HOUSTON



CPU Time using CPI

Instruction

1. MUL X3, X1, X2

2. ADD X5, X3, X4
CPI=5

3. Div X7, X3 X6 Instruction Count = 3

Clock Cycle Time = 600ps
CPU Time =5 *3 * 600 =9 ns

CPU Time = (Instruction Count X CPI) X Clock Cycle Time
Total Clock Cycles

UNIVERSITYof HOUSTON



Instruction Count and CPI

Clock Cycles =Instruction Count x Cycles per Instruction
CPU Time =Instruction Count x CPIx Clock Cycle Time

B Instruction Count x CPI
Clock Rate

* |nstruction Count for a program
— Determined by program, ISA and compiler

* Average cycles per instruction
— Determined by CPU hardware
— If different instructions have different CPI

* Average CPI affected by instruction mix

UNIVERSITYof HOUSTON



Performance Summary

CPU Time Instructions y Clock cycles Seconds

X
Program Instruction  Clock cycle

* Performance depends on
— Algorithm: affects IC, possibly CPI
— Programming language: affects IC, CPI
— Compiler: affects IC, CPI
— Instruction set architecture: affects IC, CPI, T_
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Understanding Performance

Algorithm

— Determines number of operations executed

Programming language, compiler, architecture

— Determine number of machine instructions executed per operation

Processor and memory system

— Determine how fast instructions are executed
/0 system (including OS)

— Determines how fast |/O operations are executed
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