Computer Organization and Architecture
COSC 2425

Lecture — 2
Aug 24t 2022

Acknowledgement: Slides from Edgar Gabriel & Kevin Long

UNIVERSITYof HOUSTON

Review: Classes of Computers

* Personal computers
— General purpose, variety of software
— Subject to cost/performance tradeoff

* Server computers
— Network based
— High capacity, performance, reliability
— Range from small servers to building sized

UNIVERSITYof HOUSTON

Review: Classes of Computers

* Supercomputers
— High-end scientific and engineering calculations

— Highest capability but represent a small fraction of the overall
computer market

e Embedded computers
— Hidden as components of systems
— Stringent power/performance/cost constraints

UNIVERSITYof HOUSTON

Review: How do computers work?

T
Today: 20 emails » Represent numbers
Yesteyrday- 10 elmails P v What is the basic idea behind a
' ?
Total: 30 emails » Perform addition — computer.. _
How does it do this?
Emaill => subject: Hi John » Represent text

-
UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Review: Control the flow of current using transistors

.|.
NPN Transistor

E

Transistor Symbol

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Review: Control the flow of current using transistors

+ +
C

No Current flow

Current flow

Apply small current

UNIVERSITYof HOUSTON

Review: Binary Representation of Numbers

Binary Number -> use two symbols for representation (0 & 1)
101101

UNIVERSITYof HOUSTON

Review: Binary Representation of Numbers

Binary Number -> use two symbols for representation (0 & 1)
101101

index 5 4 3 2 1 0

1 0 1 1 0 1

1x2° o 0X2" g 1X2° g 1X2? g 0X2' g 1X2°

1X32 0X16 1X8 1X4 0X2 1X1 = 45

UNIVERSITYof HOUSTON

Review: Represent Letters

Come up with an arbitrary convention to associate with
numbers, and then use binary representation.

A=>65=>0100000T
B=>66=>01000010
C=>67=>01000011
D=>68=>01000100
Represent words CAB=> 0710000717 07000007 07000010

UNIVERSITYof HOUSTON

Review: Computations

 Can we do Arithmetic (Addition)?
— Need to take at least two inputs, and operate on them.
— We will build logic gates to accomplish this.

— How do we build logic gates?
* Cleverly place transistors to create circuits.

UNIVERSITYof HOUSTON

Review: Two transistors in parallel: Logic Gate

C
Input 1 Input 2 Output
B 0 0 0
Input 1: Apply current
1 0 0
E

C 0 1 0
B 1 1 1
Input 2: Apply curre
E | AND Gate D

Output Symbol
UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Review: Another logic gate

Input Output
A A A 0 1
I 1 0
DC Current
Close (1) C
‘ Output (0)
B
O oO—
NOT Gate
E [

UNIVERSITYof HOUSTON

Review: OR Gate

Input 1 Input 2 Output
0 0 0
1 0 1
OR Gate
0 1 1

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Review: ADD Numbers (Simplified)

* Add two one-bit numbers, and produce two-bit results
* InputcanbeOorl

Input 1 Output 1
Input 2 Output 2

UNIVERSITYof HOUSTON

XOR Gate
Input 1 Input 2 Output 2
0 0 0
1 0 1
0 1 1
1 1 0

UNIVERSITYof HOUSTON

Review: Design an Adder

Output 1
Input 1
Input 2 Output 2
—7 Input 1 Input 2 Output 1 | Output 2
0 0 0 0
XOR Gate

It looks similar to OR Gate.

Except the last row is inverted where both inputs are 1, 0 1 0 1

the result in inverted.
1 0 0 1
1 1 1 0

Binary

UNIVERSITYof HOUSTON

Review: Many Such Circuits Exists

 There are many such circuits available to

— Load data, store data, add, subtract and perform logical ops on data.

UNIVERSITYof HOUSTON

Review: Questions

. What operations can hardware perform? How to instruct
computer to perform a certain operation? How are negative
numbers/exponentials represented?

How do we perform addition, multiplication, division?

How do we improve the speed of the computer? Can we do things
in parallel (compute while loading next data, etc.)

. Where is data stored? How can we make it efficient?

. Can we perform computations in parallel to improve
performance?

How do we define performance?

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Review: Third Generation: Integrated Circuits

e 1958 — the invention of the
integrated circuit

* Exploits the fact that transistors
can be fabricated from a

semiconductor such as silicon
e Many transistors can be produced at the same time
on a single wafer of silicon

e Transistors can be connected with a processor
metallization to form circuits

UNIVERSITYof HOUSTON

Semiconductor Technology

e Silicon: semiconductor

* Add materials to transform properties:
— Conductors
— Insulators
— Switch

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Manufacturing ICs

Silicon ingot

)

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Manufacturing ICs

Blank
Silicon ingot wafers

) — s — () — it
-

@> 1"

UNIVERSITYof HOUSTON

Silicon ingot

Manufacturing ICs

Blank
wafers

¢

20

to 40

processing steps

UNIVERSITYof HOUSTON

Patterned wafers

T

——.....\

A\

AT~
N

_. .
AT ITNAT TN

Chemical
Process/Add
impurities to
make switches
(transistors

Manufacturing ICs

Blank
Silicon ingot wafers
processing steps
* Chemical
Tested dies Tested Patterned wafers Process/Add
i wafer AN impurities to make
l P . .
_ Oooogg : Wafer AN switches (transistors
ooxOoo | Dicer Qﬁ@‘ tester | ¥ SN (
i)
\ .
L Delicate Process at

microscopic level,
potential for failure

Multiple chips/dies
from each wafer

UNIVERSITYof HOUSTON

Manufacturing ICs

Blank
Silicon ingot wafers
. 20to 40
C) SiiEEG @ processing steps
Tested dies Tested Patterned wafers
O wafer T
Circuitry t te | Bond die t DDDZIDDDIZD (R Waf ()1-\
IrCUItry to Create | bond die to : afer 1A \
. Y package OOXOO ey Q i "@ tester AR
logic gates/ ouoo s G
l OO \

UNIVERSITYof HOUSTON

Manufacturing ICs

Blank

Silicon ingot wafers
processing steps
Tested dies Tested Patterned wafers

0O wafer T
Bond die t DDD&DDDED Waf EREEZIN
ond die to : afer 112
package OOXROO 2zl tester pann)
OO0 (\/
l OO \ =~
\"--_..
Packaged dies Tested packaged dies

Ogg | pat | OOX | shipto
tester customers

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Intel Core i7 Wafer

* 300mm wafer, 280 chips, 32nm technology
* Each chipis 20.7 x 10.5 mm

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

Cost to make one chip/die

> SQO Cost per wafer

9 chips/dies
4 Cost per die

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

> SQO Cost per wafer

9 chips/dies

Cost per wafer (90
g Slo Cost per die = p fer (90)

dies per wafer (9)

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

> SQO Cost per wafer

9 chips/dies
ips/di A $10 Cost per wafer (90)

Cost die =
oSt per aie dies per wafer (9)

9 chips/dies

»
»

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

> SQO Cost per wafer

9 chips/dies c 90
N ost per wafer
: Slo Cost per die = — P fer ©0)
dies per wafer (9)
9 chips/dies _ Working dies(6)
N ? yleld — = 0.66

dies per wafer (9)

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

> SQO Cost per wafer

9 chips/dies ; 90
_ ost per wafer
i Slo Cost per die = — P fer (90) =10
dies per wafer (9)
9 chips/di old — Working dies(6) 0.66
chips Iei 2 Y = dies per wafer (9)
Cost per wafer (90
Cost per die = P fer O0) = 15.15

dies per wafer (9) = yield (0.66)

UNIVERSITYof HOUSTON

Integrated Circuit Cost

Cost per wafer
Dies per wafer x Yield

Cost per die =

Dies per wafer ~ Wafer area/Die area

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Integrated Circuit Cost

9 chips/di old — Working dies(6)
cnips lei P} Y = dies per wafer (9)

>
[]

0.66

Yield for this wafer.

Much more complicated to compute yield for
manufacturing process.

Many statistical models are proposed to estimate yield.

UNIVERSITYof HOUSTON

Integrated Circuit Cost

Cost per wafer
Dies per wafer x Yield

Cost per die =

Dies per wafer ~ Wafer area/Die area

1

Yield= _ -
(1+ (Defects per areaxDie area/2))

* Nonlinear relation to area and defect rate
— Wafer cost and area are fixed
— Defect rate determined by manufacturing process
— Die area determined by architecture and circuit design

UNIVERSITYof HOUSTON

Questions

6. How do we define performance?

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Ougput 1
Input 1
Input 2 ’ Output 2

Output 1 | Output 2

l 0 0 0 0

0 1 0 1
Half Adder 1 0 0 !
1 1 1 0

UNIVERSITYof HOUSTON Binary

DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Output 1
Input 1

Half Adder
Output 2

Input 1 Input 2 Output 1 | Output 2
Switches 0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

UNIVERSITYof HOUSTON Binary

DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Input 1 Input 1

Half Adder

Input 2 Input 2 Output 2

Load to temp memory

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder

Output 2

What is memory?
How do you make a

computer remember values
(0,1)?

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder

Output 2

What is memory?

How do you make a
computer remember values
(0,1)?

Also using Logic Gates.

UNIVERSITYof HOUSTON

Remembering 1’s

OR Gate
Output
—>
A B Output
0 0 0
1 0 1

UNIVERSITYof HOUSTON

Remembering 1’s

Output
A B Output
0 0 0
1 0 1
0 X ?

UNIVERSITYof HOUSTON

Remembering 1’s

A
Output
B '
] A B Output

0 0 0
1 0 1
0 X 1
1 X 1

Once input, it remembers a one for ever.

UNIVERSITYof HOUSTON

Remembering 1's and O’s

Output A Output
- B —)
Output A Output
0 1
1 0
1 0
0 0

UNIVERSITYof HOUSTON

Combine Both: SR And-OR Latch

S R Output

UNIVERSITYof HOUSTON

https://upload.wikimedia.org/wikipedia/commons/e/e0/RS-and-or-flip-flop.png

Combine Both: SR And-OR Latch

S R Output
1 0 1
0 0 ?

UNIVERSITYof HOUSTON

https://upload.wikimedia.org/wikipedia/commons/e/e0/RS-and-or-flip-flop.png

DEPARTMENT OF COMPUTER SCIENCE

Combine Both: SR And-OR Latch

Set
S R Output
Reset 1 0 1
0 0 1 :
0 1 ?

UNIVERSITYof HOUSTON

https://upload.wikimedia.org/wikipedia/commons/e/e0/RS-and-or-flip-flop.png

DEPARTMENT OF COMPUTER SCIENCE

Combine Both: SR And-OR Latch

Set
S R Output
Reset 1 0 1
0 0 1 >
0 1 0
0 0 0 >

UNIVERSITYof HOUSTON

https://upload.wikimedia.org/wikipedia/commons/e/e0/RS-and-or-flip-flop.png

DEPARTMENT OF COMPUTER SCIENCE

Gated Latch

Data Input (i)

I O
Data Output (o)

Write Enable (w) 0 0
1 0 (No update)
0 0 (Same as |)
1 1 (Same as |)
0 1 (No update)
1 1 (No update)

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder

Output 2

What is memory?

How do you make a
computer remember values
(0,1)?

Also using Logic Gates.

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder
Output 2

No update as write is
disabled

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder
Output 2

Values updated as
write is enabled

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Half-Adder with manual input

Stored in memory (E.g. HDD)

Output 1

Half Adder
Output 2

Values loaded into
memory

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Register (4 bit) — A group of latches

Data In '
A register that can store

— up to 4 bits (0-15)

_/

Enable/disable write simultaneously

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Register (4 bit) — A group of latches

Data In

4 bit
Register

Data In _

Write enable

Enable/disable write simultaneously

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Instruction

4 bit Register 4 bit Register
4-bit Adder 4-bit Multiplier s 4-bit Divider

4 bit Register

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Instruction

Loaded data Loaded data

4-bit Adder 4-bit Multiplier s 4-bit Divider

How to instruct computer to Add/Multiply/Divide?

UNIVERSITYof HOUSTON

Multiplexer (Data selector)

A O

—

B O

e

f

|—1-'I'.'l—1-'l:'l
il:j.u.ﬂ.._'l.._'l..

Ba

= 3 |= {3 |= |0 |— |3
= D = O == O |

UNIVERSITYof HOUSTOI>I
https://learnabout-electronics.org/Digital/dig42.php

Multiplexer (Data selector)

(@
Il
o

A O

—

B O

e

I
[_1._11:):;

iD ol | =2 |

Ba

= =z | | D= | | | S
= |3 |= | |—= |3 |—== ({3
= D = (D= = | O (O

UNIVERSITYof HOUSTOI7|
https://learnabout-electronics.org/Digital/dig42.php

Multiplexer (Data selector)

co Selector
t A B xXllce A x

1
A O |10 [1 olo|o|o
6 |1 |1 olo|l1]o0
SR L o |1 1 | 1
~|>D— 5 1 lof[o] o
B O 1ol 1l 1
111l oll o
111 1] 1

UNIVERSITYof HOUSTOI>I
https://learnabout-electronics.org/Digital/dig42.php

DEPARTMENT OF COMPUTER SCIENCE

Instruction

4 bit Register

4 bit Register

4 bit Register

Loaded data Loaded data

4-bit Adder 4-bit Multiplier 4-bit Divider

10001011000 | | |
Selector to choose

operation

11000

Selector to
choose data

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Instruction

4 bit Register

4 bit Register

4 bit Register

Loaded data

Loaded data

4-bit Adder 4-bit Multiplier 4-bit Divider

10001011000 | | |
Switch to choose

operation

11001

Switch to
choose data

4 bit Register 4 bit Register

4 bit Register

11100

Selector to choose UNIVERSITYof HOUSTON

output register

DEPARTMENT OF COMPUTER SCIENCE

Instruction

4 bit Register

4 bit Register

4 bit Register

Loaded data Loaded data

11001

Operand_s

(Source)

4-bit Adder 4-bit Multiplier 4-bit Divider
10001011000 | | |
Opcode
4 bit Register 4 bit Register 4 bit Register

11100

Operand_d (destination) UNIVERSITYof HOUSTON

Instruction Example

Opcode

Operand_s1

Operand_s2

Operand_d

10001011000 11001

11010

11100

Instruction : 10001011000 11001 11010 11100

Instruction are represented in binary form. Stored in memory.

The only language a computer understand.
Byte code, machine code, ...

UNIVERSITYof HOUSTON

Levels of Program Code

¢ Hardware representation :Binarj,rmachine
anguage
— Binary digits (bits) {or ARMYE)
— Encoded instructions and data

UNIVERSITYof HOUSTON

00000000101000100000000100011000
00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Levels of Program Code

¢ Hardware representation :Binarj,rmachine
anguage
— Binary digits (bits) {or ARMYE)
— Encoded instructions and data

UNIVERSITYof HOUSTON

(i?semb;:w
_—ﬂ“'/

00000000101000100000000100011000
00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000

10101101111000100000000000000100
00000011111000000000000000001000

Levels of Program Code

Assembl
* Assembly language e
— Textual representation of e
instructions
¢ Hardware representation Binary machine
language
— Binary digits (bits) {or ARMYE)

— Encoded instructions and data
UNIVERSITYof HOUSTON

Swap:
L5L ¥10, X1.3
ADD X10, X0,X10
LDUR X9, [X10,01]
LDUR X11,[X10,81
STUR X11,[X10,01
STUR X9, [X10.81
BR X10
(;iésen;;;t)
o —

00000000101000100000000100011000
00000000100000100001000000100001
10001101111000100000000000000000
10001110000100100000000000000100
10101110000100100000000000000000
10101101111000100000000000000100
00000011111000000000000000001000

Levels of Program Code

* High-level language pggg
— Level of abstraction closerto “”
problem domain
— Provides for productivity and
portability
Assembl
* Assembly language e
— Textual representation of e
instructions
¢ Hardware representation :Binarj,rmachine
anguage
— Binary digits (bits) {or ARMYE)

— Encoded instructions and data
UNIVERSITYof HOUSTON

swap{int v[1, int k)
{int temp:
temp = vlk];
VLE] = vIk+11;
v[k+1] = temp;

l_

Compiler

|

Swap:

L5L X10, X1.3

ADD X10, X0,X10

LOUR X%, [X10,0]

LOUR X11,[X10,8]

STUR X11,[X10,0]

STUR X%, [X10,8]

BR ¥10

Assembler

Qooo0000101000100000000100011000
UEEEEEOJ JJUDDIDIIIIIOOOOOIDUDDI
10001101111000100000000000000000
1000111 UDUDIDDIDEEEEEDODOODDDIN
1010111 UDUDIDDIDEEEEEOOOOODDUDN
10101101111000100000000000000100
ULLLLL_;___SDDUDEEEEEOOOOODDIDm

DEPARTMENT OF COMPUTER SCIENCE

Computer Architecture: Great |ldeas

» Use abstraction to simplify design

ABSTRACTION

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.

MUL X3, X1, X2
ADD X5, X3, X4

X5

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.

MUL X3, X1, X2
ADD X5, X3, X4

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.

MUL X3, X1, X2

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.

MUL X3, X1, X2 — 900 ps (picoseconds) Il
ADD X5, X3, X4

900 ps

No valid result in X3 until after 900 ps «

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.
MUL X3, X1, X2 —900 ps
ADD X5, X3, X4 — 200 ps X1

Execute after 900 ps
X4

v

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Execution in Sequence

* CPU executes instructions in sequence.

Time o5

Add 200
Mul 900
Div (Max) 1200

* Hundreds of instructions.
* Too complicated to compute how much to wait.
* Choose the largest values as the clock period for all
instructions.
e Allinstructions are executed for that period of time.
UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

CPU Clocking

* QOperation of digital hardware governed by a
constant-rate clock

<«—Clock period—

Clock (cycles)

= Clock period: duration of a clock cycle
x €.9., 250ps = 0.250ns = 250x10-1°s

UNIVERSITYof HOUSTON

CPU Clocking

= Clock period: duration of a clock cycle
= €.0., 250ps = 0.25ns = 250x10-1°s

= Clock frequency (rate in Hertz): cycles per

second
1 (1000

o H —
(250 x 10-12) 2 250
—4 «+105KHz = 4 * 103MHz = 4 GHz

) *x 10°Hz =4+ 10°Hz

UNIVERSITYof HOUSTON

CPU Clocking

* MUL X3, X1, X2
(wait 1200ps)

* ADD X5, X3, X4
(wait 1200ps)

e Next Instruction

UNIVERSITYof HOUSTON

CPU Clocking

* MUL X3, X1, X2
(wait 1200ps)

* ADD X5, X3, X4
(wait 1200ps)

e Next Instruction

How does a computer know 1200 ps has passed?

UNIVERSITYof HOUSTON

Clock Cycles Per Instruction (CPI)

+ ADD X3, X1, X2 "
(takes 200ps)
¢ AD:) XS, X3, X4 200ps
(takes 200ps) |
1200ps 2460ps

MUL X3, X1, X2 =» 1200ps

UNIVERSITYof HOUSTON

Clock Cycles Per Instruction (CPI)

+ ADD X3, X1, X2 I
(takes 200ps)
° AD :) XS; X31 X4 200ps
(takes 200ps) :
60iOps 12:00ps

DIV X3, X1, X2 =» 600ps X 2Clock cycles

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Clock Cycles Per Instruction (CPI)

* All take at-least one clock cycle.
* Some instructions can take more than one clock cycle.
* |f the instruction set has only three instructions

Clock Cycles

Add 1
Mul 2
Div 12
: 14+2+12
Average Clock Cycle Per Instruction (CPI) = i 3+ =5

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Performance

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Defining Performance

* Which airplane has the best performance?

Passenger | Cruising range
Airplane capacity (miles)

Cruising speed
(m.p.h.)

Boeing 777 375 4630 610
Boeing 747 470 4150 610
BAC/Sud Concorde 132 4000 1350
Douglas DC-8-50 146 8720 o44

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Defining Performance

* Which airplane has the best performance?

Passenger | Cruising range | Cruising speed | Passenger throughput
Airplane capacity (m.p.h.) (passengers x m.p.h.)
375 610

Boeing 777 4630 228,750
Boeing 747 470 4150 610 286,700
BAC/Sud Concorde 132 4000 1350 178,200
Douglas DC-8-50 146 8720 o44 79,424

UNIVERSITYof HOUSTON

Response Time and Throughput

Response time
— How long it takes to do a task

Throughput
— Total work done per unit time

* e.g., tasks/transactions/... per hour

How are response time and throughput affected by
— Replacing the processor with a faster version?
— Adding more processors?

We'll focus on response time for now...

UNIVERSITYof HOUSTON

Relative Performance

* Define Performance = 1/Execution Time
e “Xisntime faster than Y” or
e “Speedup of XoverY “is

Performance, /Performance,
= Execution time, /Execution time, =n

= Example: time taken to run a program

10son A, 15s0on B

Execution Timeg / Execution Time,
=15s/10s=1.5

So Ais 1.5 times faster than B
Speedup of Aover Bis 1.5

UNIVERSITYof HOUSTON

Measuring Execution Time

* Elapsed time

— Total response time, including all aspects
* Processing, I/0, OS overhead, idle time

— Determines system performance

* CPU time
— Time spent processing a given job
* Discounts I/O time, other jobs’ shares
— Comprises user CPU time and system CPU time

— Different programs are affected differently by CPU and system
performance

UNIVERSITYof HOUSTON

CPU Time

Instruction Clock Cycles Cycle Time (ps)

1. MUL X3, X1, X2 2 600

2. ADD X5, X3, X4 1 600

3. Div X7, X3 X6 12 600

CPU Time 15 (Total Clock Cycles) 15 * 600 = 9000 ps =9 ns

CPU Time = Total Clock Cycles X Clock Cycle Time

UNIVERSITYof HOUSTON

CPU Time

CPU Time = CPU Clock Cyclesx Clock Cycle Time

~ CPUClock Cycles
Clock Rate

* Performance improved by

— Reducing number of clock cycles
— Increasing clock rate

UNIVERSITYof HOUSTON

CPU Time

CPU Time = CPU Clock Cyclesx Clock Cycle Time

~ CPUClock Cycles
Clock Rate

* Performance improved by

— Reducing number of clock cycles
— Increasing clock rate

— Hardware designher must often trade off clock rate
against cycle count

MUL X3, X1, X2 =» 1200ps -)1600ps XIZCIock cycles

UNIVERSITYof HOUSTON

DEPARTMENT OF COMPUTER SCIENCE

Clock Cycles Per Instruction (CPI)

* All take at-least one clock cycle.
* Some instructions can take more than one clock cycle.
* |f the instruction set has only three instructions

Clock Cycles

Add 1
Mul 2
Div 12
: 14+2+12
Average Clock Cycle Per Instruction (CPI) = i 3+ =5

UNIVERSITYof HOUSTON

CPU Time using CPI

Instruction

1. MUL X3, X1, X2

2. ADD X5, X3, X4
CPI=5

3. Div X7, X3 X6 Instruction Count = 3

Clock Cycle Time = 600ps
CPU Time =5 *3 * 600 =9 ns

CPU Time = (Instruction Count X CPI) X Clock Cycle Time
Total Clock Cycles

UNIVERSITYof HOUSTON

Instruction Count and CPI

Clock Cycles =Instruction Count x Cycles per Instruction
CPU Time =Instruction Count x CPIx Clock Cycle Time

B Instruction Count x CPI
Clock Rate

* |nstruction Count for a program
— Determined by program, ISA and compiler

* Average cycles per instruction
— Determined by CPU hardware
— If different instructions have different CPI

* Average CPI affected by instruction mix

UNIVERSITYof HOUSTON

Performance Summary

CPU Time Instructions y Clock cycles Seconds

X
Program Instruction Clock cycle

* Performance depends on
— Algorithm: affects IC, possibly CPI
— Programming language: affects IC, CPI
— Compiler: affects IC, CPI
— Instruction set architecture: affects IC, CPI, T_

UNIVERSITYof HOUSTON

Understanding Performance

Algorithm

— Determines number of operations executed

Programming language, compiler, architecture

— Determine number of machine instructions executed per operation

Processor and memory system

— Determine how fast instructions are executed
/0 system (including OS)

— Determines how fast |/O operations are executed

UNIVERSITYof HOUSTON

