
Computer Organization and Architecture
COSC 2425

Lecture – 2

Aug 24th, 2022

Acknowledgement: Slides from Edgar Gabriel & Kevin Long

Review: Classes of Computers

• Personal computers
– General purpose, variety of software

– Subject to cost/performance tradeoff

• Server computers
– Network based

– High capacity, performance, reliability

– Range from small servers to building sized

Review: Classes of Computers

• Supercomputers
– High-end scientific and engineering calculations

– Highest capability but represent a small fraction of the overall
computer market

• Embedded computers
– Hidden as components of systems

– Stringent power/performance/cost constraints

Review: How do computers work?

Today: 20 emails
Yesterday: 10 emails
Total: 30 emails

Email1 => subject: Hi John

Represent numbers

Perform addition

Represent text

What is the basic idea behind a
computer?
How does it do this?

Review: Control the flow of current using transistors

+

-

Transistor Symbol

Review: Control the flow of current using transistors

+

-

+

-

No Current flow

-

Current flow

Apply small current

Review: Binary Representation of Numbers

Binary Number -> use two symbols for representation (0 & 1)

101101

Review: Binary Representation of Numbers

Binary Number -> use two symbols for representation (0 & 1)

101101

5 4 3 2 1 0

1 0 1 1 0 1

1 X 25 0 X 24 1 X 23 1 X 22 0 X 21 1 X 20

1 X 32 0 X 16 1 X 8 1X 4 0 X 2 1 X 1 = 45

index

Review: Represent Letters

• Come up with an arbitrary convention to associate with
numbers, and then use binary representation.

• A => 65 => 01000001

• B => 66 => 01000010

• C => 67 => 01000011

• D => 68 => 01000100

• Represent words CAB => 01000011 01000001 01000010

Review: Computations

• Can we do Arithmetic (Addition)?

– Need to take at least two inputs, and operate on them.

– We will build logic gates to accomplish this.

– How do we build logic gates?

• Cleverly place transistors to create circuits.

Review: Two transistors in parallel: Logic Gate

Output

Input 1: Apply current

Input 2: Apply current

Input 1 Input 2 Output

0 0 0

1 0 0

0 1 0

1 1 1

AND Gate

Symbol

Review: Another logic gate

Close (1)

DC Current

Output (0)

Input Output

0 1

1 0

NOT Gate

Review: OR Gate

Input 1 Input 2 Output

0 0 0

1 0 1

0 1 1

1 1 1

OR Gate

Review: ADD Numbers (Simplified)

• Add two one-bit numbers, and produce two-bit results

• Input can be 0 or 1

Adder

Input 1

Input 2

Output 1

Output 2

Input 1 Input 2 Output 2

0 0 0

1 0 1

0 1 1

1 1 0

XOR Gate

XOR Gate

Review: Design an Adder

Input 1 Input 2 Output 1 Output 2

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Binary

Input 1

Input 2

Output 1

Output 2

It looks similar to OR Gate.
Except the last row is inverted where both inputs are 1,
the result in inverted.

Review: Many Such Circuits Exists

• There are many such circuits available to

– Load data, store data, add, subtract and perform logical ops on data.

Review: Questions

1. What operations can hardware perform? How to instruct
computer to perform a certain operation? How are negative
numbers/exponentials represented?

2. How do we perform addition, multiplication, division?
3. How do we improve the speed of the computer? Can we do things

in parallel (compute while loading next data, etc.)
4. Where is data stored? How can we make it efficient?
5. Can we perform computations in parallel to improve

performance?
6. How do we define performance?

Review: Third Generation: Integrated Circuits

• 1958 – the invention of the
integrated circuit

• Exploits the fact that transistors
can be fabricated from a
semiconductor such as silicon

• Many transistors can be produced at the same time
on a single wafer of silicon

• Transistors can be connected with a processor
metallization to form circuits

Semiconductor Technology

• Silicon: semiconductor

• Add materials to transform properties:

– Conductors

– Insulators

– Switch

Manufacturing ICs

Manufacturing ICs

Manufacturing ICs

Chemical
Process/Add
impurities to
make switches
(transistors

Manufacturing ICs

Chemical
Process/Add
impurities to make
switches (transistors

Delicate Process at
microscopic level,
potential for failure

Multiple chips/dies
from each wafer

Manufacturing ICs

Circuitry to create
logic gates/

Manufacturing ICs

Intel Core i7 Wafer

• 300mm wafer, 280 chips, 32nm technology

• Each chip is 20.7 x 10.5 mm

Integrated Circuit Cost
Cost to make one chip/die

$90 Cost per wafer

? Cost per die

9 chips/dies

Integrated Circuit Cost

$90 Cost per wafer

$10 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑖𝑒 =
𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (90)

𝑑𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (9)

9 chips/dies

Integrated Circuit Cost

$90 Cost per wafer

$10 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑖𝑒 =
𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (90)

𝑑𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (9)

9 chips/dies

9 chips/dies
X

X

X
?

Integrated Circuit Cost

$90 Cost per wafer

$10 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑖𝑒 =
𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (90)

𝑑𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (9)

9 chips/dies

9 chips/dies
X

X

X
? 𝑦𝑖𝑒𝑙𝑑 =

𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑖𝑒𝑠(6)

𝑑𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (9)
= 0.66

Integrated Circuit Cost

$90 Cost per wafer

$10 𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑖𝑒 =
𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (90)

𝑑𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (9)
= 10

9 chips/dies

9 chips/dies
X

X

X
?

𝑦𝑖𝑒𝑙𝑑 =
𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑖𝑒𝑠(6)

𝑑𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (9)
= 0.66

𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑑𝑖𝑒 =
𝐶𝑜𝑠𝑡 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (90)

𝑑𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 9 ∗ 𝑦𝑖𝑒𝑙𝑑 (0.66)
= 15.15

Integrated Circuit Cost

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost

+
=

=

Integrated Circuit Cost

9 chips/dies
X

X

X
?

𝑦𝑖𝑒𝑙𝑑 =
𝑊𝑜𝑟𝑘𝑖𝑛𝑔 𝑑𝑖𝑒𝑠(6)

𝑑𝑖𝑒𝑠 𝑝𝑒𝑟 𝑤𝑎𝑓𝑒𝑟 (9)
= 0.66

Yield for this wafer.
Much more complicated to compute yield for
manufacturing process.
Many statistical models are proposed to estimate yield.

Integrated Circuit Cost

• Nonlinear relation to area and defect rate

– Wafer cost and area are fixed

– Defect rate determined by manufacturing process

– Die area determined by architecture and circuit design

2area/2)) Diearea per (Defects(1

1
Yield

area Diearea Wafer waferper Dies

Yield waferper Dies

 waferper Cost
die per Cost

+
=

=

Questions

1. What operations can hardware perform? How to instruct
computer to perform a certain operation? How are negative
numbers/exponentials represented?

2. How do we perform addition, multiplication, division?
3. How do we improve the speed of the computer? Can we do things

in parallel (compute while loading next data, etc.)
4. Where is data stored? How can we make it efficient?
5. Can we perform computations in parallel to improve

performance?
6. How do we define performance?

Half-Adder with manual input

Input 1 Input 2 Output 1 Output 2

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Binary

Input 1

Input 2

Output 1

Output 2

Half Adder

Half-Adder with manual input

Input 1 Input 2 Output 1 Output 2

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Binary

Input 1

Input 2

Output 1

Output 2

Switches

Half Adder

Half-Adder with manual input

Input 1

Input 2

Load to temp memory

Stored in memory (E.g. HDD)

Input 1

Input 2

Output 1

Output 2
Half Adder

Half-Adder with manual input

Input 1

Input 2

Stored in memory (E.g. HDD)

Input 1

Input 2

What is memory?
How do you make a
computer remember values
(0, 1)?

Output 1

Output 2
Half Adder

Half-Adder with manual input

Input 1

Input 2

Stored in memory (E.g. HDD)

Input 1

Input 2

What is memory?
How do you make a
computer remember values
(0, 1)?
Also using Logic Gates.

Output 1

Output 2
Half Adder

Remembering 1’s

Output
A

B

A B Output

0 0 0

1 0 1

OR Gate

Remembering 1’s

Output
A

B

A B Output

0 0 0

1 0 1

0 X ?

Remembering 1’s

Output
A

B

A B Output

0 0 0

1 0 1

0 X 1

1 X 1

Once input, it remembers a one for ever.

Remembering 1’s and 0’s

Output
A

B

A B Output

0 0 0

1 0 1

0 X 1

1 X 1

Output
A

B

A B Output

1 1 1

0 1 0

1 X 0

0 X 0

Combine Both: SR And-OR Latch

https://upload.wikimedia.org/wikipedia/commons/e/e0/RS-and-or-flip-flop.png

S R Output

1 0 ?

Set

Reset

Combine Both: SR And-OR Latch

https://upload.wikimedia.org/wikipedia/commons/e/e0/RS-and-or-flip-flop.png

S R Output

1 0 1

0 0 ?

Set

Reset

Combine Both: SR And-OR Latch

https://upload.wikimedia.org/wikipedia/commons/e/e0/RS-and-or-flip-flop.png

S R Output

1 0 1

0 0 1

0 1 ?

Set

Reset

Combine Both: SR And-OR Latch

https://upload.wikimedia.org/wikipedia/commons/e/e0/RS-and-or-flip-flop.png

S R Output

1 0 1

0 0 1

0 1 0

0 0 0

Set

Reset

Gated Latch

GL
Data Output (o)

Write Enable (w)

Data Input (i)
I W O

0 0 0

1 0 0 (No update)

0 1 0 (Same as I)

1 1 1 (Same as I)

0 0 1 (No update)

1 0 1 (No update)

Half-Adder with manual input

Input 1

Input 2

Stored in memory (E.g. HDD)

Input 1

Input 2

What is memory?
How do you make a
computer remember values
(0, 1)?
Also using Logic Gates.

Output 1

Output 2
Half Adder

Half-Adder with manual input

Input 1

Input 2

Stored in memory (E.g. HDD)

Output 1

Output 2
Half Adder

GL

GL

No update as write is
disabled

Half-Adder with manual input

Input 1

Input 2

Stored in memory (E.g. HDD)

Output 1

Output 2
Half Adder

GL

GL

Values updated as
write is enabled

Half-Adder with manual input

Input 1

Input 2

Stored in memory (E.g. HDD)

Output 1

Output 2
Half Adder

GL

GL

Values loaded into
memory

Register (4 bit) – A group of latches

GL

GL

GL

GL

Data In

Enable/disable write simultaneously

A register that can store
up to 4 bits (0-15)

Register (4 bit) – A group of latches

GL

GL

GL

GL

Data In

Enable/disable write simultaneously

4 bit
Register

Data In

Write enable

Instruction

4 bit Register 4 bit Register 4 bit Register

4-bit Adder 4-bit Multiplier 4-bit Divider

…

…

Instruction

4 bit Register 4 bit Register 4 bit Register

4-bit Adder 4-bit Multiplier 4-bit Divider

…

…

Loaded data Loaded data

How to instruct computer to Add/Multiply/Divide?

Multiplexer (Data selector)

https://learnabout-electronics.org/Digital/dig42.php

Multiplexer (Data selector)

https://learnabout-electronics.org/Digital/dig42.php

C = 0

Multiplexer (Data selector)

https://learnabout-electronics.org/Digital/dig42.php

C = 1
Selector

Instruction

4 bit Register 4 bit Register 4 bit Register

4-bit Adder 4-bit Multiplier 4-bit Divider

…

…

Loaded data Loaded data

10001011000

11000

Selector to
choose data

Selector to choose
operation

Instruction

4 bit Register 4 bit Register 4 bit Register

4-bit Adder 4-bit Multiplier 4-bit Divider

…

…

Loaded data Loaded data

10001011000

11001

Switch to
choose data

Switch to choose
operation

4 bit Register 4 bit Register 4 bit Register

11100

Selector to choose
output register

Instruction

4 bit Register 4 bit Register 4 bit Register

4-bit Adder 4-bit Multiplier 4-bit Divider

…

…

Loaded data Loaded data

10001011000

11001

Operand_s
(Source)

Opcode

4 bit Register 4 bit Register 4 bit Register

11100

Operand_d (destination)

Instruction Example

Opcode Operand_s1 Operand_s2 Operand_d

10001011000 11001 11010 11100

Instruction : 10001011000 11001 11010 11100

Instruction are represented in binary form. Stored in memory.
The only language a computer understand.
Byte code, machine code, …

Levels of Program Code
• High-level language

– Level of abstraction closer to
problem domain

– Provides for productivity and
portability

• Assembly language
– Textual representation of

instructions

• Hardware representation
– Binary digits (bits)

– Encoded instructions and data

Levels of Program Code
• High-level language

– Level of abstraction closer to
problem domain

– Provides for productivity and
portability

• Assembly language
– Textual representation of

instructions

• Hardware representation
– Binary digits (bits)

– Encoded instructions and data

Levels of Program Code
• High-level language

– Level of abstraction closer to
problem domain

– Provides for productivity and
portability

• Assembly language
– Textual representation of

instructions

• Hardware representation
– Binary digits (bits)

– Encoded instructions and data

Levels of Program Code
• High-level language

– Level of abstraction closer to
problem domain

– Provides for productivity and
portability

• Assembly language
– Textual representation of

instructions

• Hardware representation
– Binary digits (bits)

– Encoded instructions and data

Computer Architecture: Great Ideas

• Use abstraction to simplify design

Execution in Sequence

• CPU executes instructions in sequence.

MUL X3, X1, X2
ADD X5, X3, X4 X1

X2

X3

X4

X5

MUL

ADD

Execution in Sequence

• CPU executes instructions in sequence.

MUL X3, X1, X2
ADD X5, X3, X4 X1

X2

X3

X4

X5

MUL

ADD

Execution in Sequence

• CPU executes instructions in sequence.

MUL X3, X1, X2
ADD X5, X3, X4 X1

X2

X3

X4

X5

MUL

ADD

Execution in Sequence

• CPU executes instructions in sequence.

MUL X3, X1, X2 – 900 ps (picoseconds)
ADD X5, X3, X4 X1

X2

X3

X4

X5

MUL

ADD

900 ps

No valid result in X3 until after 900 ps

Execution in Sequence

• CPU executes instructions in sequence.

MUL X3, X1, X2 – 900 ps
ADD X5, X3, X4 – 200 ps X1

X2

X3

X4

X5

MUL

ADDExecute after 900 ps

Execution in Sequence

• CPU executes instructions in sequence.

Operation Time (ps)

Add 200

Mul 900

Div (Max) 1200

• Hundreds of instructions.
• Too complicated to compute how much to wait.

• Choose the largest values as the clock period for all
instructions.

• All instructions are executed for that period of time.

CPU Clocking
• Operation of digital hardware governed by a

constant-rate clock

Clock (cycles)

computation

Clock period

◼ Clock period: duration of a clock cycle

◼ e.g., 250ps = 0.250ns = 250×10–12s

CPU Clocking

◼ Clock period: duration of a clock cycle

◼ e.g., 250ps = 0.25ns = 250×10–12s

◼ Clock frequency (rate in Hertz): cycles per

second

=
1

250 × 10−12
𝐻𝑧 =

1000

250
∗ 109𝐻𝑧 = 4 ∗ 109𝐻𝑧

= 4 ∗ 106𝑲𝐻𝑧 = 4 ∗ 103𝑴𝐻𝑧 = 𝟒 𝑮𝑯𝒛

CPU Clocking

• MUL X3, X1, X2

(wait 1200ps)

• ADD X5, X3, X4

(wait 1200ps)

• Next Instruction

CPU Clocking

• MUL X3, X1, X2

(wait 1200ps)

• ADD X5, X3, X4

(wait 1200ps)

• Next Instruction

How does a computer know 1200 ps has passed?

Clock Cycles Per Instruction (CPI)

• ADD X3, X1, X2

(takes 200ps)

• ADD X5, X3, X4

(takes 200ps)

1200ps

200ps

MUL X3, X1, X2 ➔ 1200ps

200ps

2400ps

Clock Cycles Per Instruction (CPI)

• ADD X3, X1, X2

(takes 200ps)

• ADD X5, X3, X4

(takes 200ps)

1200ps

200ps

DIV X3, X1, X2 ➔ 600ps X 2Clock cycles

200ps

600ps

Clock Cycles Per Instruction (CPI)

Operation Clock Cycles

Add 1

Mul 2

Div 12

• All take at-least one clock cycle.
• Some instructions can take more than one clock cycle.
• If the instruction set has only three instructions

Average Clock Cycle Per Instruction (CPI) =
𝟏+𝟐+𝟏𝟐

𝟑
= 𝟓

Performance

Defining Performance
• Which airplane has the best performance?

Defining Performance
• Which airplane has the best performance?

Response Time and Throughput

• Response time

– How long it takes to do a task

• Throughput

– Total work done per unit time
• e.g., tasks/transactions/… per hour

• How are response time and throughput affected by

– Replacing the processor with a faster version?

– Adding more processors?

• We’ll focus on response time for now…

Relative Performance

• Define Performance = 1/Execution Time

• “X is n time faster than Y” or

• “Speedup of X over Y “ is

◼ Example: time taken to run a program

◼ 10s on A, 15s on B

◼ Execution TimeB / Execution TimeA

= 15s / 10s = 1.5

◼ So A is 1.5 times faster than B

◼ Speedup of A over B is 1.5

n== XY

YX

time Executiontime Execution

ePerformancePerformanc

Measuring Execution Time

• Elapsed time
– Total response time, including all aspects

• Processing, I/O, OS overhead, idle time

– Determines system performance

• CPU time
– Time spent processing a given job

• Discounts I/O time, other jobs’ shares

– Comprises user CPU time and system CPU time
– Different programs are affected differently by CPU and system

performance

CPU Time

Instruction Clock Cycles Cycle Time (ps)

1. MUL X3, X1, X2 2 600

2. ADD X5, X3, X4 1 600

3. Div X7, X3 X6 12 600

CPU Time 15 (Total Clock Cycles) 15 * 600 = 9000 ps = 9 ns

CPU Time = Total Clock Cycles X Clock Cycle Time

CPU Time

• Performance improved by

– Reducing number of clock cycles

– Increasing clock rate

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

=

CPU Time

• Performance improved by

– Reducing number of clock cycles

– Increasing clock rate

– Hardware designer must often trade off clock rate
against cycle count

Rate Clock

Cycles Clock CPU

Time Cycle ClockCycles Clock CPUTime CPU

=

=

MUL X3, X1, X2 ➔ 1200ps ➔ 600ps X 2Clock cycles

Clock Cycles Per Instruction (CPI)

Operation Clock Cycles

Add 1

Mul 2

Div 12

• All take at-least one clock cycle.
• Some instructions can take more than one clock cycle.
• If the instruction set has only three instructions

Average Clock Cycle Per Instruction (CPI) =
𝟏+𝟐+𝟏𝟐

𝟑
= 𝟓

CPU Time using CPI

Instruction

1. MUL X3, X1, X2

2. ADD X5, X3, X4

3. Div X7, X3 X6

CPU Time = (Instruction Count X CPI) X Clock Cycle Time

CPI = 5
Instruction Count = 3
Clock Cycle Time = 600ps
CPU Time = 5 *3 * 600 = 9 ns

Total Clock Cycles

Instruction Count and CPI

• Instruction Count for a program

– Determined by program, ISA and compiler

• Average cycles per instruction

– Determined by CPU hardware

– If different instructions have different CPI
• Average CPI affected by instruction mix

Rate Clock

CPICount nInstructio

Time Cycle ClockCPICount nInstructioTime CPU

nInstructio per CyclesCount nInstructioCycles Clock

=

=

=

Performance Summary

• Performance depends on

– Algorithm: affects IC, possibly CPI

– Programming language: affects IC, CPI

– Compiler: affects IC, CPI

– Instruction set architecture: affects IC, CPI, Tc

The BIG Picture

cycle Clock

Seconds

nInstructio

cycles Clock

Program

nsInstructio
Time CPU =

Understanding Performance

• Algorithm

– Determines number of operations executed

• Programming language, compiler, architecture

– Determine number of machine instructions executed per operation

• Processor and memory system

– Determine how fast instructions are executed

• I/O system (including OS)

– Determines how fast I/O operations are executed

