
LEGv8 Assembly Language

1. Arithmetic and Immediate instructions

2. Load/Store Instructions
1. Accessing operands in memory

3. Decision Making
1. Branch on zero/not zero (==, ! =)

2. Condition flags, branches (<, >, >=, ==, etc.)

4. Procedures
1. Branch and link (BL), Branch register (BR)

2. Spilling registers

Instructions for Making Decisions

• Define Labels for instructions.

• LEGv8 Code:

L1: ADD X9, X21, X9

• Unconditional Branch: Instruct computer to branch to label

• B – branch to label

• LEGv8 Code:

𝐵 𝐿1 // Branch to statement with label L1

Example

B L1

ADD X10, X11, X12

L1: SUB X10, X11, X12

//Skipped

Instructions for Making Decisions

• Define Labels for instructions.
• LEGv8 Code:

L1: ADD X9, X21, X9

• Instruct computer to branch to instruction using the label if some
condition is satisfied.

• CBZ – compare and branch if zero
• CBNZ – compare and branch if not zero
• LEGv8 Code:

𝐶𝐵𝑍 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟, 𝐿1 // if (register == 0) branch to instruction labeled L1;

𝐶𝐵𝑁𝑍 𝑟𝑒𝑔𝑖𝑠𝑡𝑒𝑟, 𝐿1 // if (register != 0) branch to instruction labeled L1;

Example

CBZ X9, L2

L1: ADD X10, X11, X12

L2: SUB X10, X11, X12

Register X9
Checks to see if the
value in register is 0
If yes, branches to L2

Example

CBZ X9, L2

L1: ADD X10, X11, X12

L2: SUB X10, X11, X12

Register X9
0

Skipped

Example

CBZ X9, L2

L1: ADD X10, X11, X12

L2: SUB X10, X11, X12

Register X9
1

Example

CBNZ X9, L2

L1: ADD X10, X11, X12

L2: SUB X10, X11, X12

Register X9
Checks to see if the
value in register is not 0
If yes, branches to L2

Example

CBNZ X9, L2

L1: ADD X10, X11, X12

L2: SUB X10, X11, X12

Register X9
10

Checks to see if the
value in register is not 0
If yes, branches to L2

Skipped

Example

Let the variables x and f correspond to registers X9 and X10

If (x == 0)

f = f + 1

else

f = f - 1

Example

Let the variables x and f correspond to registers X9 and X10

If (x == 0)

f = f + 1

else

f = f - 1

CBNZ X9, L1
ADDI X10, X10, #1
B Exit
L1: SUBI X10, X10, #1
Exit:

Example

Let the variables x and f correspond to registers X9 and X10

If (x == 0)

f = f + 20

else if (x == 1)

f = f – 1

else

f = f + 1

Example

Let the variables x and f correspond to registers X9 and X10

If (x == 0)

f = f + 1

else if (x == 1)

f = f – 1

else

f = f + 20

CBNZ X9, L1
ADDI X10, X10, #1
B EXIT

L1: SUBI X11, X9, 1
CBNZ X11, L2
SUBI X10, X10, #1
B EXIT

L2: ADDI X10, X10, #20
Exit:

Example

Let the variables x and f correspond to registers X9 and X10

If (x == 0)

f = f + 1

else if (x == 1)

f = f – 1

else

f = f + 20

CBNZ X9, L1
ADDI X10, X10, #1
B EXIT

L1: SUBI X11, X9, 1
CBNZ X11, L2
SUBI X10, X10, #1
B EXIT

L2: ADDI X10, X10, #20
Exit:

Example

Let the variables x and f correspond to registers X9 and X10

If (x == 0)

f = f + 1

else if (x == 1)

f = f – 1

else

f = f + 20

CBNZ X9, L1
ADDI X10, X10, #1
B EXIT

L1: SUBI X11, X9, 1
CBNZ X11, L2
SUBI X10, X10, #1
B EXIT

L2: ADDI X10, X10, #20
Exit:

Compiling Loop Statements

• C code:

while (True)

k = k + 1

k in x24

• Compiled LEGv8 code:

Compiling Loop Statements

• C code:

while (True)

k = k + 1

k in x24

• Compiled LEGv8 code:
Loop: ADDI X24, X24, #1

B Loop

Example

• C code:

while (True)

k = k + 1

if (k == 10)

break

k in x24

Example

• C code:

while (True)

k = k + 1

if (k == 10)

break

k in x24

Loop: ADDI X24, X24, #1

SUBI X25, X24, #10

CBZ X25, Exit

B Loop

Exit:

Compiling Loop Statements

• C code:

while (save[i] == k) i += 1;

– i in x22, k in x24, address of save in x25

• Compiled LEGv8 code:
?

Compiling Loop Statements

• C code:

while (save[i] == k) i += 1;

– i in x22, k in x24, address of save in x25

• Compiled LEGv8 code:
Loop: LSL X10,X22,#3 // X10 = i*23

ADD X10,X10,X25 // Address to load save[i]

LDUR X9,[X10,#0] // load save[i]

SUB X11,X9,X24 // X11 = save[i] - k

CBNZ X11,Exit // conditional branch

ADDI X22,X22,#1 // i += 1

B Loop // uncond. branch

Exit: …

Using Condition Codes/Flags for Comparisons

< Less than

≤ Less than or equal

> Greater than

≥ Greater than or equal

= Equal

! = Not equal

Condition code

• LEGv8 provides four added bits called
condition codes.

• Some arithmetic instructions can
optionally set these flags based on the
result of the operation.

• Then the branch (B) instruction can check
these bits to do comparisons.

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(N)

𝑍𝑒𝑟𝑜 (Z)

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 (V)

𝐶𝑎𝑟𝑟𝑦 (C)

Condition codes/flags

Set Flag Instructions
Arithmetic Instruction With Set Flag Option

(Suffix S)
Description

ADD ADDS Add and set condition flag

ADDI ADDIS Add immediate and set condition flag

SUB SUBS Subtract and set condition flag

SUBI SUBIS Subtract immediate and set condition flag

AND ANDS AND and set condition flag

ANDI ANDIS AND immediate and set condition flag

Example SUBS : Subtract and Set Flag

• LEGv8 provides set flag variants for SUB

𝐴𝑠𝑠𝑢𝑚𝑒 𝑖 = +9 , j = +10 are signed integers,
and store in X1, and X2 respectively

To do the comparison
𝐼𝑓 𝑖 < 𝑗

…

Condition codes/flags

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(N)

𝑍𝑒𝑟𝑜 (Z)

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 (V)

𝐶𝑎𝑟𝑟𝑦 (C)

Example SUBS : Subtract and Set Flag

• LEGv8 provides set flag variants for SUB

𝐴𝑠𝑠𝑢𝑚𝑒 𝑖 = +9 , j = +10 are signed integers,
and store in X1, and X2 respectively

To do the comparison
𝐼𝑓 𝑖 < 𝑗

…

LEGv8 code:
𝑆𝑈𝐵𝑆 𝑋1, 𝑋1, 𝑋2

Condition codes/flags

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(N)

𝑍𝑒𝑟𝑜 (Z)

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 (V)

𝐶𝑎𝑟𝑟𝑦 (C)

Example SUBS : Subtract and Set Flag

• LEGv8 provides set flag variants for SUB

𝐴𝑠𝑠𝑢𝑚𝑒 𝑖 = +9 , j = +10 are signed integers,
and store in X1, and X2 respectively

To do the comparison
𝐼𝑓 𝑖 < 𝑗

…

LEGv8 code:
𝑆𝑈𝐵𝑆 𝑋1, 𝑋1, 𝑋2

Condition codes/flags

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(N) 1

𝑍𝑒𝑟𝑜 (Z)

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 (V)

𝐶𝑎𝑟𝑟𝑦 (C)Result is -1
The N flag is
set

Example SUBS : Subtract and Set Flag

• LEGv8 provides set flag variants for SUB

𝐴𝑠𝑠𝑢𝑚𝑒 𝑖 = +9 , j = +10 are signed integers, and
store in X1, and X2 respectively

To do the comparison
𝐼𝑓 𝑖 < 𝑗

…

LEGv8 code:
𝑆𝑈𝐵𝑆 𝑋1, 𝑋1, 𝑋2

// 𝐵𝑟𝑎𝑛𝑐ℎ 𝑖𝑓 𝑁 𝑓𝑙𝑎𝑔 𝑖𝑠 𝑠𝑒𝑡

Condition codes/flags

𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒(N) 1

𝑍𝑒𝑟𝑜 (Z)

𝑂𝑣𝑒𝑟𝑓𝑙𝑜𝑤 (V)

𝐶𝑎𝑟𝑟𝑦 (C)

Conditional branches use
these codes to do
comparisons

Conditional Branches that use Flags

• Format ➔ B.cond
• Use subtract to set flags and then conditionally branch

– B.EQ
– B.NE
– B.LT (less than, signed)
– B.LO (less than, unsigned)
– B.LE (less than or equal, signed)
– B.LS (less than or equal, unsigned)
– B.GT (greater than, signed)
– B.HI (greater than, unsigned)
– B.GE (greater than or equal, signed),
– B.HS (greater than or equal, unsigned)

Conditional Example

if (a > b)

a += 1;

– a in X22, b in X23

LEGv8 Code:

?

Conditional Example

if (a > b)

a += 1;

– a in X22, b in X23

LEGv8 Code:

SUBS X9,X22,X23 // use subtract to make comparison

B.LTE Exit // conditional branch

ADDI X22,X22,#1

Exit:

Example

• C code:

while (True)

k = k + 1

if (k > 10)

break

k in x24

Example

• C code:

while (True)

k = k + 1

if (k > 10)

break

k in x24, and is a signed number

Loop: ADDI X24, X24, #1

SUBIS X25, X24, #10

B.GT Exit

B Loop

Exit:

Example

• C code:

while (True)

k = k + 1

if (k > 10)

break

k in x24, and is a signed number

Loop: ADDI X24, X24, #1

SUBIS X25, X24, #10

B.GT Exit

B Loop

Exit:

The result of the subtract instruction
is redundant,
B.GT uses the condition flags for
branching
For efficiency, we can give the
destination register as XZR instead of
X25

Example

• C code:

while (True)

k = k + 1

if (k > 10)

break

k in x24, and is a signed number

Loop: ADDI X24, X24, #1

SUBIS XZR, X24, #10

B.GT Exit

B Loop

Exit:

